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AbstractÐThe velocity and concentration ®elds of two-phase vortex ¯ows have been studied. Analytical
methods were used where possible to solve a number of particularly simple cases easy to be interpreted
physically. Two cases of gaseous motion were considered: the vortex with concentrated vorticity and
the Rankine vortex. For each vortex, the motion of one particle was studied at ®rst, using an asympto-
tic multiple scales method, and the results were compared with numerical data. Then an equivalent par-
ticle continuum was analyzed, ®rst in terms of Lagrangian coordinates, then in Eulerian variables,
assuming the time dependent or stationary solutions to be rotationally invariant. # 1998 Elsevier
Science Ltd. All rights reserved
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1. INTRODUCTION

Fluid ¯ows often exhibit vortices. Vortices are encountered, for instance, in cloudbursts and

cyclones andÐon a completely di�erent scaleÐin super¯uid helium. This type of phenomenon

also occurs when draining vessels (Guyon et al. 1991). In other cases, vorticity may not be as

concentrated, but rotating ¯ow structures still exist. This is the case for shear layers or mixing

layers between ¯uids moving at di�erent velocities. Periodic shedding of coherent vortex struc-

tures can also be observed in the wakes of obstacles. In the vicinity of sharp edges, such as the

case of an aircraft wing trailing edge, areas of very high velocity exist. These high velocities give

rise to a highly vortical motion that is then carried away by the ¯ow (Germain 1986). These vor-

tices can be stretched and sometimes they split and tend rapidly towards disorder and dissipa-

tion (Delery et al. 1997). Finally, structures of this type are also visible in Jupiter's atmosphere

on a scale of several tens of thousands of kilometers. These vortex regions of varying vorticity

appear clearly during numerical simulations based on well-known systems of equations. The

case of a two-dimensional vortex with concentrated vorticity in a single phase ¯uid is well-

known. Such a ¯uid vortex is also called an irrotational vortex since outside its center, con-

sidered as a singularity, the ¯ow is irrotational and circulation of the velocity vector on any

closed curve containing the center is constant and equal to G. This vortex can be dissipated by

viscosity in a medium remaining at rest at in®nity (Germain 1962). Growth of a quasi-solid core

of radius r1
����
nt
p

can be observed. The rate of expansion of the core decreases as G/nt such that,

asymptotically, the vortex structure includes this central core surrounded by the initial irrota-

tional vortex. Marble (1985, 1988) investigated the development of vortices in presence of chemi-

cal reactions with unmixed, then premixed species. He demonstrated that, in certain cases, the

growth of a mixing core resulting from di�usion and combustion is observed in addition to the

quasi-solid core.

There are fewer models for ¯ows with particles than for one phase ¯uids (Fortier 1967;

Kuentzmann 1973; Clift et al. 1978; Soo 1990; Nigmatulin 1991). This is why it was interesting

to solve, analytically where possible, a number of particularly simple cases easy to interpret phy-
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sically. From the results obtained, one will infer a few characteristics of the laminar behavior of
suspensions in vortex ¯ows. These results may be useful for the experimentalist (problems of
¯ow seeding for laser anemometry measurement), for the computational specialist and for the
engineer facing industrial multiphase ¯ow problems. It should be noted that we only investi-
gated rotationally invariant ¯ows as will be mentioned.

Three types of vortices are considered: the vortex with vorticity concentrated at a point (irro-
tational vortex), the Rankine vortex and the modi®ed Rankine vortex.

For the irrotational vortex, an analytical approach shall be tried, be it only by determining
asymptotic solutions. In other cases, numerical analysis will provide a complete solution.

First of all, before discussing the behavior of a suspension which is a so-called particle-conti-

nuum, we must clearly recall the assumptions made for a particle of this suspension and describe
how the equations are to be used. The particles investigated are assumed to be spherical, the
force acting on them by the surrounding gas is given by Stokes' theory and that there are no
heat or mass transfer between the particles and the gas.

The problem of the in¯uence of other forces was investigated by several authors in di�erent
situations such as the propagation of small periodic perturbations (Dodemand et al. 1995), and
the e�ect of vortex motion (Tio et al. 1993a,b) with or without heat or mass transfer. The in¯u-
ence of gravity has been investigated, over the last few years, in particular by GanÄ aÂ n-Calvo and
Lasheras (1991); Tio et al. (1993a,b); Lasheras and Tio (1994). These authors have found several
stable and unstable structures, closed orbits and attractors for particles whose speci®c density is
generally larger than the ¯uid density.

Marcu et al. (1995) have studied the e�ect of gravity on particles which move inside a
Burgers vortex. Burgers vortex-like structures seem to be preeminent in turbulence. In the case
of zero gravity there exist a critical value of the Stokes number under which the particle is dri-
ven by the ¯ow towards the center of the vortex. Gravity e�ects lead to more complex situations
and one or three equilibrium points appear away from the center depending on the Stokes and
Froude numbers. Studying the vicinity of these equilibrium points one observes changes in stab-
ility as functions of terminal velocity and strain parameter. Nodes, focuses, closed trajectories
and saddle points are obtained.

It is assumed, in these studies, that the condensed particles do not disturb the ¯uid motion
and are only in¯uenced by it. A discussion about the relative importance of the di�erent terms
is presented at the end of this paper (see Appendix A).

The analysis is limited to the simplest case, in order to thoroughly investigate the asymptotic
behavior of a case that remains realistic. Since the ¯uid motion was given by the velocity ®eld
nnng, the following vector equation should be solved:

dpnnnp
dt
� nnng ÿ nnnp

tn
�1�

where nnp is the particle velocity, (dpnnp)/(dt) the particle acceleration and tn the particle/gas relax-

ation time which is assumed to be constant (see Appendix A).

The particle trajectories will be determined, as the motion in planes (x,y) or (r,t) and (y,t) or
(r,npr) and (r,npy) or again (r,y), preferably after having made the terms of equation dimension-
less. The analysis of particle motion in a force ®eld is nothing new for those who study mech-
anics or particle physics, continually confronted with this type of problem. The present work
focuses on vortex movements and solutions of, in view of applying the results to the study of
suspensions.

The problems raised at the particle continuum scale are multiple. (We consider this a macro-
scopic scale as opposed to the microscopic scale of the particle and the molecular scale internal
to the particle or gas.)

First the velocity ®eld will be investigated. It can be de®ned in Eulerian coordinates or
Lagrangian coordinates. In the case of suspensions of uniform concentration at t= 0, some
very simple and characteristic situations are of great interest in understanding the phenomenol-
ogy of the motion. Generally, Eulerian coordinates can then be used to clearly de®ne what is
understood by a rotationally invariant solution near the center of the vortex and by a steady or
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unsteady solution. These results have to be converted to Lagrangian coordinates to take advan-
tage of the knowledge gained from the analysis of the motion of an isolated particle.

In addition, questions will be asked concerning the continuity of the solutions and the physi-
cal assumptions to be made concerning the continuum approach.

In cylindrical (or two-dimensional polar) Eulerian coordinates, it is always assumed that the
radial and angular components of the velocity vector depend only on the radial coordinate r
and the time (velocity ®eld invariant by rotation at time t):

npr � npr�r,t�, npy � npy�r,t�: �2�

In Lagrangian coordinates, due to the rotation invariance of the initial positions, it can be
written:

r � r�a,t�, a � r�a,0�, t � t, dr � @r
@a

da� @r
@t

dt, dt � dt,

i.e. by inversion:

da � drÿ �@r=@t�dt
@r=@a

:

Then the Eulerian partial derivatives @nr/@t, @ny/@t are given in terms of Lagrangian coordinates,
yielding successively to:

@ny
@ t
� @r

_y
@ t
� @r

_y
@a

@a

@t
� @r

_y
@t

, _y � _y�a,t� � @y
@t

,

@nr
@ t
� @ _r

@t
� @ _r

@a

@a

@ t
� @ _r

@t
, _r � _r�a,t� � @r

@t
,

and:

@ny
@t
� r

@r=@a

�
@ _y
@t
@r

@a
ÿ @

_y
@a

@r

@t

�
,

@nr
@ t
� 1

@r=@a

�
@ _r

@t
@r

@a
ÿ @ _r

@a

@r

@t

�
:

The right-hand members are zero for a steady velocity ®eld, leading to the double condition:

@ _y=@t

@ _y=@a
� @r=@t
@r=@a

� b�a�, �3�

where b(a) is a function of the initial radial coordinate giving the radial velocity versus a at
t = 0.

Condition [3] must be veri®ed for any rotationally invariant steady ¯ow. It should be noted
that r depends only on a and t, but the polar angle y depends on the initial polar angle a as
well:

y � y�a,a,t�, a � y�a,a,0�,
whereas _y depends only on a and t. This means:

y � a� y0�a,t�, y0�a,0� � 0: �4�
Condition [4] is always satis®ed for any rotationally invariant ¯ow, regardless of whether it is
steady or not.

The particle concentration rp, de®ned as the mass of condensed phase contained in the unit
volume of the mixture, for a rotationally invariant ¯ow depends only on r and t in Eulerian
variables and therefore on a and t in Lagrangian variables. In Eulerian variables, it veri®es the
equation:
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@ �rrp�
@t
� �nprrrp�

@r
� 0, �5�

and in Lagrangian variables:

@

@t

�
rrp

@r

@a

�
� 0,

yielding:

rp�a,t� �
arp�a,0�
r�@r=@a� : �6�

It should be noted that a steady velocity ®eld, which therefore veri®es double equation if it is
rotationally invariant, can give an unsteady density distribution, as demonstrated by the follow-
ing examples.

2 . VORTEX WITH CONCENTRATED VORTICITY

The ¯uid ¯ow is irrotational outside a singularity which is located at one point if the ¯ow is
two-dimensional. The circulation G is constant on any closed curve surrounding the center of
the vortex. The gas velocity vector components in polar coordinates are therefore:

ngr � 0, ngy � G=2pr: �7�
This velocity ®eld veri®es the momentum and continuum equations for constant density ¯uid
¯ows (rG is constant).

From a practical standpoint, this type of vortex is the idealization of the ¯ow created by an
in®nitely thin rod rotating at high velocity around itself in a ¯uid at rest at in®nity. If the rod is
removed, the vortex becomes free and, assuming that its center remains steady, the vortex is
damped by viscosity according to:

ngr � 0, ngy � G
2pr

�
1ÿ exp

�
ÿ r2

4nt

��
where n = m/rg is the kinematic viscosity. The vorticity is no longer concentrated but extends to
a viscous core whose radius increases as

����
nt
p

. Similarly, certain steady ¯ows have a viscous core.
An usual approximation assumes that the motion is that of an undistorted solid rotating uni-
formly within a circle of radius R connected on the outside to the irrotational vortex. This last
model leads to the Rankine vortex. The vortex whose vorticity is concentrated at a point corre-
sponds to the Rankine vortex for which R 4 0.

Another structure, for which the velocity ®eld satis®es the Navier±Stokes equations, is the
Burgers vortex (Burgers, 1948). It de®nes a steady three-dimensional ¯ow as follows:

ngr � ÿsr, ngy � G
2pr

�
1ÿ exp

�
ÿ r2

2d2

��
, ngz � 2sz,

where s denotes the strain and d � ��������
n=s
p

is the core size. One can see that for r� d, the angular
component of the velocity tends to the irrotational angular component ([7]) and that for r
becomes <d, the angular velocity is constant.

2.1. Analysis of particle motion

The reference time tref is the relaxation time tn involved in the particle momentum equation.
It is the relaxation time necessary for the particle to reach the velocity of the constant velocity
¯uid. The given circulation G is then used to de®ne reference length and velocity such that:

lref � rn �
���������������
Gtn=2p

p
, nref �

���������������
G=2ptn

p
�8�
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The chosen reference length rn is the distance to the center of the vortex at which the ¯uid tra-
vels 1/2p circumference in a time tn and the corresponding angular velocity component is then
the reference velocity. Reference time and length decrease with decreasing particle density and
radius and with increasing viscosity. Reference length decreases with G. When made dimension-
less in this way, [1], considering [7], becomes:

dpnnnp
dt
� 1

r
ey ÿ nnnp: �9�

For simplicity the same symbols have been kept in [9] and in the following equations for dimen-
sionless parameters.

If y and r are the particle's angular and radial dimensionless coordinates, we then have along
y and r respectively:

1

r

d�r2 _y�
dt
� 1

r
ÿ r _y, �10�

�r � r _y
2 � ÿ_r, �11�

where _r,�r, _y are the time derivatives of the particle position variables. The solution of this system
of equations depends on four integration constants, which are the values at time t = 0:

r�0� � a, y�0� � a, _r�0� � b, _y�0� � b �12�
A ®rst integration of [10] yields (Soo, 1990):

r2 _y � 1� �a2bÿ 1�eÿt �13�
Substituting this in [11] yields:

�r� _r � �1� �a
2bÿ 1�eÿt�2
r3

: �14�

Solving [13] and [14] with [12] gives the particle trajectories and the variation of the particle pos-
ition as a function of time.

No use has been made of a hydrodynamic characteristic length that would be independent of
the vortex and particle characteristics. If such a hydrodynamic length L was introduced, no
characteristic dimensionless number would appear here and a characteristic time: T = 2p L2/G
could be de®ned as the time for the ¯uid to travel 1/2p circumference of the circle of radius L.
A Stokes number St could then be introduced by comparison between the two times tn and T:

St � tn=T � r2n=L
2:

The advantage of this last formulation is that the variations of tn and rn with the particle and
vortex parameters are directly determined by the Stokes number. However the advantage of the
formulation chosen lies in the simplicity of the equations obtained. The usual discussion con-
cerning the value of St is replaced here by a discussion about the orders of the dimensionless
variables r and t (small values of St mean that times higher than tn and radius larger than rn are
considered. Inversely, high values of St correspond to small time and distance from the vortex
center).

As it can be seen later, the immediate consequence is that if r�lref, then the particle will
respond quickly to the changing ¯ow direction and the inertial drift radially outwards will be
weaker. If rW lref the inertia has a strong impact on the particle trajectory. The scaling expan-
sion is e�ective because the ¯ow has no de®ned length scale and is singular at the origin. A var-
iety of renormalization constraints may then be adopted.

To display the asymptotic behavior of the system, a multiple scale method is used, setting:

r � ep�r, t � eq�t, npr � en�npr, npy � em�npy, �15�
where the number e is small compared with unity, allowing small, large or 0(1) values for each

R. PRUD'HOMME et al.458



of the above four parameters. The variables �r, �t, �npr, �npy are 0(1) by de®nition. For instance,
p>0 means that the distances investigated in the center of the vortex are very small compared
with the reference length given in [8].

For each choice of p, q, m, and n, the time and space derivatives like d�r=d�t, d�npr=d�t are
assumed to be 0(1) for the reduced quantities. In particular, since npr=dr/dt, we infer that:

n � pÿ q �16�

The integration constant of [13] and [14] will be:

a2b � em�p�a2�b �17�
since ab is equal to r _y, i.e. to npy at time t = 0.

Applying the above de®nitions to the variation of polar angle y yields to:

y � a� e1�y, where 1 � m� qÿ p �18�

Figure 2. Position in plane (p,m) characterizing the orders of magnitude of r and npy respectively for the
di�erent cases, in particular the solutions of case III where npy � ngy.

Figure 1. Position in plane (p,q) (orders of magnitude: e p of the distance to the center of the vortex and
e q of the time) of the solutions of case II for which npy and ngy are assumed to be of the same order of

magnitude.
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[13] and [14] which completely describe the particle motion are written:

em�p �r2
d�y
d�t
� 1� �em�p�a2�bÿ 1�eÿeq�t �19�

e4pÿ2q
d2�r

d�t2
� e4pÿq

d�r

d�t
� 1

�r3
�
1� �em�p �a2�bÿ 1�eÿeq�t�2 �20�

Depending on the values chosen for m, p and q (from which n and l are deduced according to
[16] and [18]), certain terms of equations [17] and [18] may vanish, which then allows an analytic
solution.

Table 1 shows all the possible solutions to this problem. It can be seen that certain approxi-
mations could have been made directly in [9], for which the ®ve degenerate cases as well the
undegenerate case (II2b) can be seen in the table. The other approximations correspond to
degenerate cases speci®c to the polar coordinates associated with the characteristics of the gas
vortex selected. Five other degenerate cases appear. The solutions for these cases may be deter-
mined analytically.

It may be worthwhile to show the solutions of case II in the plane (p,q), since ep and eq rep-
resent the orders of magnitude of r and t respectively in the sense where, for instance, p>0
means r � 1, p = 0 gives r = 0(1) and p < 0 corresponds to r� 1 (®gure 1).

Figure 3. Representation in the physical plan for three elementary movements.
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The positions of the solutions of case III, for which it is assumed npy� ngy, are shown in
plane (p,m) (®gure 2); ep represents the order of magnitude of the radial coordinate and em that
of velocity npy.

The trajectories are easy to obtain in the physical plane for cases (I1a), (II1a) and (III1a) cor-
responding to a uniform motion in a straight line (®gure 3a), for case (II3b) where the particle
follows the gas (®gure 3b), for case (III2a) of damped rectilinear motion (®gure 3c) and case
(III3) of the unmoving particle (®gure 3d). In ®gure 3a, the position of the trajectory is de®ned
by r0 and y0. The particle velocity is n0.

The use of multiple scales expansions allows one to distinguish between the ranges t� 1,
t01, or t� 1 and these correspond to case II. A common approach is to apply matching
between the expansions. For t� 1 the initial condition of the particle momentum is important,
but for t� 1 this becomes r2 _y � 1. The exponential coe�cient means that tr3 su�ces for
t� 1. The conditions I1a, II1a, III1a are for a particle with such strong inertia that, whatever

Table 3. Solutions of case II npy=0(ngy)

II1a uniform motion in a straight line (same as I1a)
II1b Same as I1b

II2a r � a� b�1ÿ eÿt�, y � a� 1

b

�
abÿ 1

a� b

��
1ÿ a

a� b�1ÿ eÿt�
�
�
t� log �a� b�1ÿ eÿt��

a
�a� b�2

nr � a� bÿ r, ny � 1ÿ a2b
b
�
�
1� �a2bÿ 1�

�
a

b
� 1

��
1

r

II2b Numerical solution, undegenerated case

II3a nr � 1

r3
, ny � 1

r
, y � aÿ a2

2
� r2

2

II3b Uniform rotation

r � a, nr � o, ny � 1

a

Table 2. Solutions of case I npy � ngy

I1a (see ®gure 3a)ÐUniform motion in a straight line

npr � n0

�������������
1ÿ r20

r2

r
, n20 � b2 � a2b2, r20 �

a4b2

b2 � a2b2

npy � a2b
r

I1b npr � b, r � a� bt, y � a� ab
b
ÿ a2b
b�a� bt�

npy � a2b
r

, y � a� ab
b

�
1ÿ a

r

�

I2a npr � b, r � a� bt, y � a� 1

b2
log

r

a
ÿ 1

b

�
abÿ 1

b

��
1ÿ a

r

�

npy � 1

b
� a�abbÿ 1�

br

I2b A Taylor series expansion is carried out around t = 0 giving in the third order

r � a� bt� ab2

2
t2, y � a� bt� �1ÿ 2abb�

npr �
�������������������������
b2ab2�rÿ a�

q
, npy � b

ÿ b
b
ÿ 1ÿ 2abb

a3b2
�
r� 1ÿ 2abb

a2b
r

��������������������������
b2

a2b
ÿ 2� 2r

a

s
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Figure 4. Case I (npy � ngy). Path representations in plan (r,n) and in the physical plan.

Table 4. Solutions of case III npy � ngy

III1a Uniform motion in a straight line (same as I1a)
III1b Same as I1b
III2a (see ®gure 3c)-Damped motion in a straight line
III2b Same as II2a taking a2b 41

r � a� b�1ÿ eÿt�, y � a� ab
b

�
1ÿ a

a� b�1ÿ eÿt�
�
�
t� log �a� b�1ÿ eÿt��

a
�a� b�2

nr � a� bÿ r, ny � ÿ a2b
b
�
�
1� a2b

�
a

b
� 1

��
1

r

III3
r � a, y � a
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its initial location relative to the point vortex, the particle continues una�ected with constant
linear momentum. This can only persist for t < 1 since eventually the viscous drag forces will
bring the particle to rest. The condition III2a is more general and physically accounts for the
previous three conditions also. Here the in¯uence of the vortex is negligible and the particle con-
tinues on a straight line before coming to rest.

The example II3b would arise for a particle exhibiting relatively little inertia but trapped by
the vortex and spiraling slowly from the completely circular path of a ¯uid element. In this con-
text r� 1 so that 1/r is a small parameter.

The solutions are developed for each case in tables 2±4.

Figure 5. Case II [npy � 0�ngy)]. Path representations in plane (r,n) and in the physical plane.
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Finally, the curves corresponding to the di�erent solutions are given in the plane (r, velocity)
and, where possible, in the physical plane, ®gures 4 and 5.

Figure 6 is an example of numerical result in the undegenerate case. It shows two trajectories
which, after moving away from each other, tend to move together and converge on a spiral
which is a common asymptote. The turns tend to become closer as time goes by, which is easily
explained by the asymptotic behavior II3a.

Before examining a particle continuum, the physical assumptions should be recalled. For an
individual particle in the vortex:

Ðthe particle size must be small compared with the distance to the center of the vortex;
Ðthe Reynolds number of the particle must be su�ciently small to verify Stokes's theory;
Ðthe conditions must be satis®ed for the other drag terms to be negligible compared with
the Stokes terms. In particular, this means that the gas density must be very small compared
with the particle density and the accelerations must not be too large (see Appendix A).

For the continuum (two-phase medium), the assumptions regarding dilute suspensions are
assumed to be veri®ed. In particular, the volume occupied by the particles must be negligible
compared with the volume of gas. This assumption is no longer veri®ed for high particle concen-
trations, rp. It will be seen that there are cases where the particles tend to collect in certain
regions. If the distance between particles becomes too small, the theory of suspensions without
interactions between particles is no longer valid and, if this distance becomes very small and in
presence of high gradients, even the continuum hypothesis may no longer be valid, in which
case shocks may occur.

2.2. Analysis of the particle continuum motion

The above analysis naturally leads one to consider the particle continuum forming the suspen-
sion in terms of Lagrangian coordinates. In e�ect, the above equations and results are valid, but
the question of continuity arises and discontinuity waves may occur. The description using
Eulerian coordinates will then be examined, assuming only one particle size.

The particle continuum veri®es [1] which takes form [9] for the gas vortex with concentrated
vorticity and yields [10] and [11] in Lagrangian coordinates with:

r � r�a,t�, _r � @r
@t

, a � r�a,0�, b � _r�a,0�, �21�

Figure 6. Example of numerically computed path (a2b= 2, b=ÿ 2).
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y � a� y0�a,t�, _y � @y
@t

,

0 � y0�a,0�, b � _y�a,0�, �22�
assuming the solutions to be rotationally invariant ([4]). However, considering a continuum also
requires speci®cation of the functions:

b � b�a� and b � b�a� �23�
The form of these functions determine whether or not the particle ¯ow is a continuum and the
steady or unsteady nature of certain solutions.

The example of case I1a (or II1a or III1a) is considered. Each particle moves in a straight
line and then:

r2 � r20 �
�
n0t� ab

n0

�2

, n20 � b2 � a2b2, npr � n0

������������
1ÿ r20

r2

s
, r20 �

a4b2

b2 � a2b2
, npy � a2b

r
: �24�

r0 and n0 are de®ned on ®gure 7.
If r0 and n0 are constant and given the following functions of a for b and b:

b � K

a2
, b2 � K 2

�
1

r20
ÿ 1

a2

�
, �25�

this yields:

n2pr � K 2

�
1

r20
ÿ 1

r2

�
, npy � K

r
, reaer0, �26�

i.e. a continuous solution for rrr0 provided one of the positive or negative roots is taken to
provide npr in [26]. This solution is also steady. The velocity ®eld is deduced with n0>0 as
shown in ®gure 7a; there are no particles inside the circle of radius r0. Cases where b0<0, verify-

Figure 7. Dispersed phase motions for given values of r0 and n0.

ASYMPTOTIC ANALYSIS OF VORTEX FLOWS IN SUSPENSIONS 465



ing [25], can also be considered with n0 remaining positive. The particles again follow the same

rectilinear paths but ®rst move toward the center O before moving away from it. In a region

r0RrRa0, there are two determinations of npr for any point P; this solution is not to be

excluded in the case of a ¯ow with particles, whereas it would lead to the formation of a shock

in a conventional ¯uid (®gure 7b). Interactions between particles are certainly present in this

case, but are not studied here.

Another choice issued from the same basic equations [24] is given by initial conditions verify-

ing:

b � K=a2, K � C te, b � 0: �27�
The solutions obtained are unsteady as shown by their expression in Eulerian coordinates:

npr �
�

r2

2t2
ÿ K 2

r2
2

�������������������
r4

t4
ÿ 4K 2

t2

s �1=2

, npy � K

4
, r2e

��������
2Kt
p

: �28�

These solutions are continuous after choosing the positive or negative determination. However,

a distribution such that:

b � 0, b2 ÿ 6b� 5ÿ 4a � 0

leads to multiple solutions whenever t>1, as is shown in ®gure 8, where the envelope (e) of the

trajectories in the plane (r, t) has the equation

r � ÿt2 � 3tÿ 1:

A possible interpretation of the curve (e) for t>1 could be the formation of a discontinuity.

If it is, above t= 1, other equations similar to shock equations should therefore be used here.

These examples illustrate the fact that the choice of the functions b(a) and b(a) determines the

type of solution. In most cases it refers to speci®c physical situations.

In only three of the cases in table 1, the results do not depend on either b(a) or b(a). Among

these, case II3a is de®nitely the most interesting. It re¯ects the behavior of the suspension for

high values of r and t. We have:

npr � 1=r3, npy � 1=r

a steady solution approached by any particle motion. Furthermore, the instances of the general

case where the product a2b is considered constant and equal to K (as was done above in a

special case, see [27]) are also very interesting. [13] and [14] then become:

r2 _y � 1� �K ÿ 1�eÿt

Figure 8. Possible formation of a discontinuity wane.
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�r� _r � �1� �K ÿ 1�eÿt�2=r3:
�29�

For K= 1, the particles have the same angular component of velocity as the ¯uid, but their

radial velocity is di�erent due to the centrifugal e�ect. We have:

r _y � 0 or npr � 1=r

�r� _r � 1=r3: �30�

One can change variables and take r instead of t for a and b given, i.e. for a given trajectory.

Setting _r=n(a, b, r) yields the following result for the second part of [29]:

n
@n
@r
� n � 1

r3
1� �K ÿ 1�e

ÿ
�r
a

dr

n

0B@
1CA: �31�

This equation is considerably simpli®ed when K = 1. A view of the trajectories is obtained by

calculating @n/@r= 1/r3nÿ 1 and plotting the tangent elements (®gure 9). The locus of the max-

ima is n = 1/r3. Only one system of curves is obtained. On a given trajectory, starting from

di�erent initial conditions will lead to the same trajectory, as demonstrated on ®gure 10 for

b = 0 and b =ÿ 2, after computation from [30].

Contrary to the case K = 1, the case K= 2, for instance, shows after computation that the

trajectories obtained with b =ÿ 2 are di�erent from those plotted with b = 0. If a point of the

path starting at b =ÿ 2, a = 1.7 is chosen, the result from this new initial point is a new trajec-

tory (®gure 11). In addition, the locus of the maxima of npr, is not unique.

Figure 9. Field of vectors tangent to the curves npr=npr(r). Curve 1: npy=1/r; curve 2: npr=1/r3; curve
3: locus of points where the product (rnpr) is a maximum (the concentration is minimum).
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Figures 9±11 are very instructive in that the computation is totally coherent with the asympto-

tic solutions found earlier in case II of table 1. For small values of r and for npr not too large,

behavior II1a is found, giving straight line trajectories in the physical plane. The maximum of

npr corresponds to case II1b. For relatively large values of npr (positive or negative) and r, the

Figure 11. Paths (a2b = K= 2, b(a) =ÿ 2); in¯uence of b on one of the paths.

Figure 10. For a2b= K= 1, a single system of curves; here b(a) =ÿ 2, r0=r (rÇ=0).
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case II2a is characterized by trajectories parallel to the second bisector of plane (r,n). Finally,
the curves are very close to the steady path of case II3a for large radii and the particles ®nish

by following the gas motion (case II3b).

Are the general solutions steady for a2b = K= Cte ? De®nitely not for K$1, since, accord-

ing to [29], we have:

npy � r _y � 1� �K ÿ 1�eÿt
r3

:

However, K = 1 yields [30] which shows that npy does not depend on time in Eulerian vari-

ables. Is this also true for npr? The steady or unsteady feature of the ¯ow in Lagrangian vari-

ables depends not only on the equations to be solved but also, on functions b(a) and b(a).

Figure 12. Example of steady ¯ow.
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Function b(a) is set to 1/a2 for K= 1. The in¯uence of b(a) on the steady character of the ¯ow
is then evaluated.

If b(a) is represented by a single curve in ®gure 10, trajectory n(r) continuously follows this
curve. The corresponding physical situation corresponds to the steady two-dimensional ¯uid
¯ow created by a cylinder of radius r0 rotating at an angular velocity 1=r2o and whose porous
surface particles are injected at zero relative velocity and constant mass ¯ow rate. The particle
¯ow is then a steady two-dimensional ¯ow and the particle concentration is given by [6] which,
taking [3] into account, becomes:

r�a,t� � r�a,0� ab
r_r
:

Asymptotic approximations are used to derive the velocities and concentrations analytically
(®gure 12).

If particle injection is stopped at time t= t1, the particles injected up to that point, t< t1,
continue their trajectories without being in¯uenced by the end of injection and the circle with
no particles increases with time, following the motion of the last particles injected.

β=1/a2

b=0

small large

Figure 13. Example of time dependant ¯ow.
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If b(a) is zero for any positive value of a and is always zero for K= 1 (i.e. for b(a) equal to
1/a2), the trajectories are shown in ®gure 10. This is the situation of a two-dimensional vortex

of saturated vapor. A slight decrease in temperature creates a mist of particles initially carried

at the velocity of the gas vortex. The centrifugal force creates a particle hole which is a circle of

increasing radius centered at the origin. The particle concentration, zero inside the hole,

increases with time at the edges of the hole. This is the case of an unsteady ¯ow (®gure 13),

which, although very di�erent from the previous one, satis®es the same partial di�erential

equations.

One can also imagine a concrete situation for K = 0, that of a suspension at rest for t< 0 in

which a vortex is suddenly placed. The initial angular velocity b is zero as is the radial velocity

b. The particles are then swept away by the ¯ow and subjected to the centrifugal force

(®gure 14). A hole is created, as in the above case, and the ¯ow is steady.

A steady state solution can only be encountered if the following equation is veri®ed, as easily

demonstrated by using [3] and [13]:

b�a� d�a
2b�a��
da

� a2b�a� � 1: �32�

This means that in the class of solutions a2b(a) = K = Cte, only K= 1 can give steady sol-

utions. Any solution obtained for K= 1 such as @ r=@ t
@ r=@a � b�a� is a steady solution. This condition

applied to the second equation of system [30] (or to [14]) yields:

db

da
� 1

a3b
ÿ 1, �33�

which is, in fact, veri®ed when b(a) follows a single curve of ®gure 10.

Let us now discuss the solution in Eulerian coordinates. The above solutions were all

obtained using Lagrangian coordinates and the deduction of the asymptotic solutions in

Eulerian coordinates can be derived (see [26], [28] and [30] for instance). The advantage of

Lagrangian coordinates is that once the initial conditions are given [here b(a) and b(a)], all that
remains to be done is to integrate the equations with respect to time. In Eulerian coordinates,

the partial di�erential equations are with respect to time and space. [10] and [11] are replaced by

the system:

Figure 14. Particles at rest at the initial time, b(a) = 0, b(a) = 0. .
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1

r

@ �rnpy�
@ t
� npr

r

@ �rnpy�
@r
� 1

r
ÿ npy,

@npr
@t
� npr

@npr
@r
ÿ n2py

r
� ÿnpr: �34�

The steady velocity ®elds have been studied. The above system becomes (Dodemand and
Prud'homme, 1991; Dodemand, 1994)

npr
dnpy
dr
� nprnpy

r
� 1

r
ÿ npy,

npr
dnpr
dr
ÿ n2py

r
� ÿnpr: �35�

As was seen above, such steady velocity ®elds do exist. Setting, as in [15] except for time:

r � ep �r, npr � en�npr, npy � em�npy

yields:

�npr
d�npy
d�r
� �npr�npy

�r
� eÿ�m�n�

1

�r
ÿ e� pÿn��npy

�npr
d�npr
d�r
ÿ e2�mÿn�

�n2py
�r
� ÿe� pÿn��npr:

�37�

Arranging the equations in a table according to the values of pÿ n, mÿ n and m + n gives a
set of results corresponding to those of table 1 taking [16] into account, expressed in r, npr, npy,
dnpr/dr and dnpy/dr, except for the unsteady terms. Furthermore, cases I1 and III1 no longer
appear.

Without making any approximations, it can be seen that if rnpy=1, we have:

npr
dnpr
dr
� npr � 1

r3
: �38�

The solutions of this equation give the system of curves of ®gure 10. Each of the curves con-
sidered corresponds to a steady ¯ow of the particle continuum. This, in fact, corresponds to
what can be found using Lagrangian coordinates and to the concrete case of particle injection
from a circle rotating at the velocity of the ¯uid.

3 . RANKINE VORTEX

The Rankine vortex includes a ¯ow inside a circle with radius R where the ¯uid has a uniform
angular velocity O. Outside this core, the motion is that of an irrotational vortex with circula-
tion G. The velocity connection condition at r = R leads to a relationship between O, G and R.

This connection gives an angular velocity pro®le ngy(r) (®gure 15). Certain authors use a
modi®ed Rankine vortex by introducing a function which approaches Or for small values of r
and G/2p for large values of r to obtain a better velocity pro®le. The maximum is then continu-
ous instead of exhibiting a velocity peak for r = R. To summarize, two cases can be proposed:

The Rankine vortex de®ned by:

rRR, ngy � Or, ngr � 0,
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reR, ngy � G=2pr, ngr � 0, OR � G=2pr:
�39�

The modi®ed Rankine vortex de®ned by:

ngy � O
R2r

r2 � R2
, ngr � 0: �40�

Introducing the new reference quantities:

tref � tn, lref � L, nref � L=tn: �41�
[1] governing particle motion is written;

dpnnnp
dt
� $rey ÿ nnnp, $ � Otn, rER: �42�

The dimensionless number $ is the ratio of the particle viscous relaxation time to the mech-

anical ¯uid angular rotation time. Referring the characteristic radius rn of the irrotational vortex

present for rrR ([8]) to radius R yields:

rn=R �
�����
$
p

: �43�

In polar coordinates, [42] becomes:

1

r

d�r2 _y �
dt
� $rÿ r _y, rRR, �44�

�rÿ r _y2 � ÿ_r: �45�

This system is solved numerically, but an asymptotic analysis can be performed as above by

using the multiple scales method ([15]). Matching with the irrotational vortex should be carried

out on the limit radius r = R. [44] and [45] become:

eÿq
d��r2 �_y_ �
d�t
� �r2 �_y � �$e2s�pÿm �r2, $ � e2s �$, �46�

Figure 15. Fluid tangential velocity versus radius.
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eÿq
d2�r

d�t2
� d�r

d�t
� e2mÿ2p�q �r �_y2: �47�

When q < 0, 2s+ pÿm= 0, 2mÿ 2p + q = 0, the result is 2s = mÿ p =ÿ q/2>0, i.e.
$= Otn<1. In this particular case, to which the analysis is restricted here with lref=L = rn,
the solution is:

_y � $, _r � $2r, rRR

_y � 1

r2
, _r � 1

r3
, reR

�48�

For this particular case, the particle velocity pro®les are given in ®gure 16. The asymptotic sol-
ution [48] obtained for small rotation velocities (or small values of tn or both) is steady.

The particle trajectories di�er according to the particle initial position. A particle coming
from r= a < R at t = 0 has one trajectory equation up to r= R; this equation then changes
for r>R. A particle located outside the solid disk at the initial time has a single trajectory
equation.

This behavior can be seen with the concentration curves, assuming the concentration to be
uniform at the initial time (®gure 17). The three above regions appear very clearly (Dodemand,
1994) at the di�erent times. It is interesting to compare these results with those of ®gure 13.

In the case of the modi®ed Rankine vortex, the solution is numerical. The asymptotic beha-
vior give the same results as those of the Rankine vortex.

4 . CONCLUSION

An analysis of particle trajectories in a suspension carried by a vortex has been performed for
vorticity concentrated in a point (irrotational vortex). Using the description of the suspension in
Lagrangian coordinates, it has been shown that the various possible steady and unsteady sol-
utions and each situation have been related to a physical situation. This approach appeared
necessary because of the di�culty in interpreting certain results and behaviors. The concepts of
continuum and discontinuity were mentioned. Partial particle density (or concentration) pro®les
were plotted for the di�erent cases. The results were then interpreted in Eulerian coordinates.
Finally, the investigation of the simple and modi®ed Rankine vortices has been performed with-
out going as far as for the singular vortex. In each case, it was assumed that the usual assump-
tions for dilute suspensions were veri®ed.

Although laminar vortices do exist, including in combustion, it is generally for only very
short times. Nevertheless, in complex ¯uid ¯ows, it is interesting to use models easier to inter-
pret. The work carried out here utilizes such simple ¯uid ¯ow con®gurations which are fre-
quently used to analyze interaction phenomena: vortex di�usion (Germain, 1986), di�usion

Figure 16. Particle velocity pro®les.
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¯ame and premixed ¯ames (Marble, 1985; Marble, 1988; Rangel and Continillo, 1992; Fichot et
al., 1993).

Heat transfer would have to be taken into account in order to generalize this theory, as do
evaporation and condensation when it applies to droplets and combustion.

It should be noted that Tio and Lasheras are also investigating the motion of a particle in a
Stuart vortex (Stuart, 1967; GanÄ aÂ n-Calvo and Lasheras, 1991; Tio and Lasheras, 1993; Lasheras
and Tio, 1994) in gravity. The Stuart vortex street actually corresponds to a succession of modi-
®ed Rankine vortices. The ¯uid streamlines have the appearances of cat eyes. In the presence of
gravity some stable and unstable con®gurations are observed. Also experimental measurements
made recently by Isaacson (1993) show that the velocity pro®les obtained from the analytic ex-
pression of the Stuart vortex stream function agree perfectly with the velocity pro®les measured
in certain shear layers.

The study of asymptotic particle behaviors in a Stuart vortex would require the use of a sys-
tem of orthogonal curvilinear coordinates related to the ¯uid, in order to proceed as above.
This is possible, but complex, and the results would certainly be limited.

Marcu et al. (1995) have analyzed the behavior of particles in a Burgers vortex which is a
three dimensional ¯ow. An asymptotic analysis would certainly be interesting here too.
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APPENDIX A

Pressure Gradient And Virtual Mass E�ects

For a small spherical particle in an unsteady ¯ow®eld, the momentum equation can be written
(Maxey and Riley, 1983; Tio et al., 1993a,b; Dodemand et al., 1995):

4

3
pr3prps

dpnnnp
dt
� 6pmrpfp�nnng ÿ nnnp� � 2

3
pr3prgs

�
dgnnng
dt
ÿ dpnnnp

dt

�
ÿ 4

3
pr3p grad� p� �

4

3
pr3prpsg� F1 � Fb,

�A1�
where rp is the particle radius, nnng,nnnp and (dpnnnp)/(dt) have been de®ned previously, (dgnng)/(dt) is
the local ¯uid acceleration, rgs and rps are the gas and particle densities, m is the ¯uid viscosity,
fp is a coe�cient correcting for the e�ects of non-zero Reynolds, p is the local pressure, g is the
gravitational acceleration, Fl is the lift and Fb is the Basset history force.

The gravity term will not be taken into account for two-dimensional horizontal vortices. The
last two forces will be neglected for simplicity.

Writing the momentum equation of the ¯uid, inviscid and at constant density, and subtracting
from [A1], one obtains:

4

3
pr3p�rps � 0:5rgs�

dpnnnp
dt
� 6pmrpfp�nnng ÿ nnnp� � 2pr3prgs

dgnnng
dt

: �A2�

This equation contains implicitly the e�ects of virtual mass and pressure gradient.

With

tn �
2rpsr

2
p

9mfp�1ÿ 0:5E � , E �
rgs

rps � 0:5rgs
, �A3�

the ¯uid density is assumed to be very small compared with the speci®c density of the particle
and the ratio E is then very small. Then the last term of the ®nal relation of the problem [A2] is
generally negligible, except for very strong accelerations of the ¯uid. This is the case in the vicin-
ity for the vortex center with concentrated vorticity. This is also the case for high rotational vel-
ocity Rankine vortices. The central force due to the ¯uid pressure gradient becomes higher than
the radial component of the particle acceleration.

For a vortex with concentrated vorticity, reference quantities de®ned in [8] are valid and the fol-
lowing equation is obtained instead of [9]:

dpnnnp
dt
� 1

r
ey ÿ nnnp ÿ 3E

2r3
er: �A4�

If r and y are the particle radial and tangential coordinates, one has:

1

r

d�r2 _y�
dt
� 1

r
ÿ r _y, �A5�

�rÿ r _y
2 � ÿ_rÿ 3E

2r3
, �A6�

and using the de®nitions [12], [13] and [14] are replaced by:

r2 _y � 1� �a2bÿ 1�eÿt, �A7�

�r� _r � �1� �a
2bÿ 1�eÿt�2 ÿ 1:5E

r3
: �A8�

[A6] shows that the term in E becomes signi®cant when:

jr2 _yj1 or h
����������
1:5E
p

: �A9�
Using [115] and putting:

ASYMPTOTIC ANALYSIS OF VORTEX FLOWS IN SUSPENSIONS 477



E � er �A10�
for studying the asymptotic behavior of the system, one ®nds that the only case of interest will
be case I of table 1 (which is modi®ed):

qem� p > 0 �A11�
and we ®nd that the e�ect of E is not negligible when:

4pÿ 2q � r �A12�
That means:

r2

t
� O�

����
E
p
� �A13�

Figure A1 shows the numerical results obtained for K=a2b=0 and E equal to 10ÿ1 and 10ÿ3. In
the last case and for E < 10ÿ3 it is evident that the in¯uence of E is non negligible only for very
small values of r. The case K=0 corresponds to a vortex suddenly introduced into a suspension
at rest. The particles which are su�ciently near the vortex center move toward this center before
going away, because they are carried in rotation by the ¯uid vortex, with increasing values of r.

Figure A1. Particles at rest at the initial time, b(a)=0, b(a)=0 (or K=0). In¯uence of the gas/particles density ratio
E=rgs/(rps+0.5rgs).
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